RELATING GALOIS POINTS TO WEAK GALOIS WEIERSTRASS POINTS THROUGH DOUBLE COVERINGS OF CURVES
نویسندگان
چکیده
منابع مشابه
Galois Theory and Torsion Points on Curves
We begin with a brief history of the problem of determining the set of points of a curve that map to torsion points of the curve’s Jacobian. Let K be a number field, and suppose that X/K is an algebraic curve of genus g ≥ 2. Assume, furthermore, that X is embedded in its Jacobian variety J via a K-rational Albanese map i; thus there is a K-rational divisor D of degree one on X such that i = iD ...
متن کاملElliptic Curves with Maximal Galois Action on Their Torsion Points
Given an elliptic curve E over a number field k, the Galois action on the torsion points of E induces a Galois representation, ρE : Gal(k/k) → GL2(b Z). For a fixed number field k, we describe the image of ρE for a “random” elliptic curve E over k. In particular, if k 6= Q is linearly disjoint from the cyclotomic extension of Q, then ρE will be surjective for “most” elliptic curves over k.
متن کاملTorsion points on modular curves and Galois Theory
In contrast to the geometric theory, where the different kinds of number pairs (x, y) that can occur as solutions are viewed as homogeneous, the arithmetic b g gggj b b bbstudy classifies more carefully the structure of solutions of specific type. That is, one tries to understand the solutions to the equation (*) where (x, y) are constrained to lie in some arithmetically defined set. One common...
متن کاملGalois Points for a Normal Hypersurface
We study Galois points for a hypersurface X with dimSing(X) ≤ dimX − 2. The purpose of this article is to determine the set ∆(X) of Galois points in characteristic zero: Indeed, we give a sharp upper bound of the number of Galois points in terms of dimX and dimSing(X) if ∆(X) is a finite set, and prove that X is a cone if ∆(X) is infinite. To achieve our purpose, we need a certain hyperplane se...
متن کاملOn Weierstrass Points and Optimal Curves
We use Weierstrass Point Theory and Frobenius orders to prove the uniqueness (up to isomorphism) of some optimal curves. This paper continues the study, begun in [FT] and [FGT], of curves over finite fields with many rational points, based on Stöhr-Voloch’s approach [SV] to the Hasse-Weil bound by way of Weierstrass Point Theory and Frobenius orders. Some of the results were announced in [T]. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2017
ISSN: 0304-9914
DOI: 10.4134/jkms.j150593